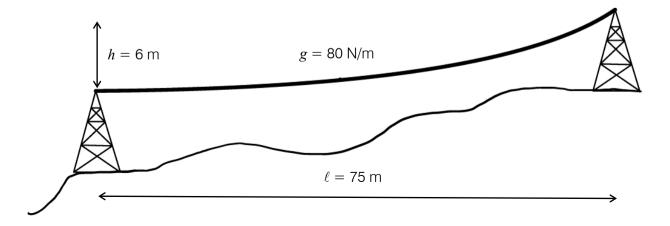


Mécanique des structures

Chapitre 1 – 8 : Midterm

Dr. Alain Prenleloup SGM BA3 2023-2024



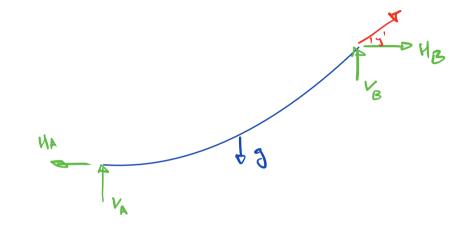
Le câble suivant est placé entre les pylônes A et B, de telle manière qu'il est horizontal en A (note : le câble a une longueur de \sim 75 m).

On considère qu'un câble ne transmet pas d'effort tranchant, ni de moment de force et qu'il forme par conséquent une parabole (équation généralisée d'une parabole : $y = ax^2 + bx + c$

- a. Calculer les réactions d'appui de la structure ainsi que l'effort dans le câble en A et en B.
- b. En tenant compte de l'effort maximal dans le câble ($\emptyset = 7$ mm), calculer l'allongement de celui-ci (le module de Young du câble est de E = 190 GPa).

EQUATION D'EQUILBRE (REACTION AUX APPUIS)

PARABOLE


$$y(x) = ax^{2} + bx + c$$

$$y(x = 0) = 0 = c$$

$$y(x = 0) = h = al^{2} + bl$$

$$y'(x) = zax + b$$

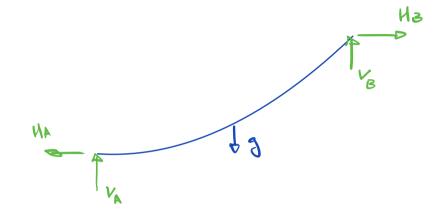
$$y'(x=P) = \frac{2h}{P^2}P = \frac{2h}{L} = \frac{\sqrt{B}}{HB}$$

$$a = \frac{h}{P^2}$$

$$H_0 = \frac{gl^2}{2h} = 31.5 \text{ kM}$$

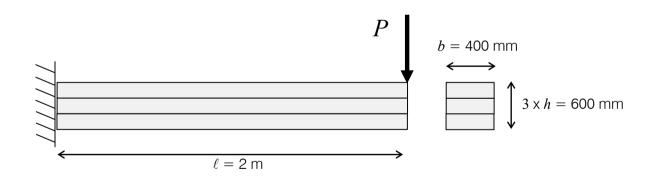
EFFORTS NORH AUX

$$N_{A} = H_{A} = 37.5$$
 $N_{B} = \int H_{B}^{2} + V_{B}^{2} = 37.58 \text{ kN}$


CONTRAINTES WORMALES

$$T = \frac{D}{F} = \frac{D}{TR^2} = \frac{A}{A}$$

ALLONGEMENT


$$E = \frac{T}{E} = \frac{NB}{FE} = \frac{NB}{TR^2E}$$

$$\Delta P = \xi P = \frac{N_0 P}{\pi R^2 E} = 0.39 m$$

Une poutre en bois lamellé-collé est constituée de 3 bandes de section de 200mm x 400mm chacune. La contrainte admissible de cisaillement des faces collées est de 2 N/mm². Déterminer la force maximale *P* qu'on peut appliquer à l'extrémité libre d'une console de 2 m de long sans provoquer de glissement entre les bandes. Quelle est la contrainte normale maximale dans ce cas. Commenter le résultat.

$$T(x) = RA = 360 \text{ kD}$$

$$H(x) = RA \times -MA = \frac{1}{8} = 0$$

MA

$$7 = \frac{TS'}{1b}$$
 AVEC $I = \frac{b(3h)^3}{12} = \frac{5bh^3}{4}$

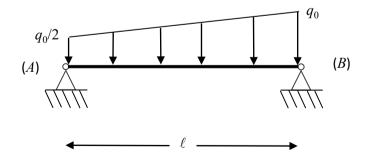
$$S' = \frac{8(3h)^2}{8} \left[1 - \left(\frac{3}{3}h/2\right)^2\right]$$

$$\tau \left(2 = \frac{5}{4}\right) = \frac{35}{45}$$

$$\tau \left(3 = \frac{h}{2}\right) = \frac{2h}{3kh^2} = \frac{2kh^2}{3kh^2} \left(1 - \frac{1}{3}\right) = \frac{3hh}{3hh} = 2\frac{h}{10}$$

6) CONTRAINTE NORMALE

$$T_{MAx} = \frac{M_{MAx} \cdot 3}{L} = \frac{D \cdot l \cdot 3h/2}{\frac{b (3h)^3}{12}} = \frac{2Pl}{2 \cdot 24 \cdot bh^{32}} = \frac{2Pl}{3bh^2} = \frac{30 \text{ MPa}}{3bh^2}$$


$$T_{B}(x=0,y=\frac{h}{2}) = \frac{pp h/2}{6(3h)^{3}} = \frac{2pp}{9bh^{2}} = 10 \text{ MPz}$$
 $T_{B}(x=0,y=\frac{h}{2}) = 7 \text{ MPa}$

$$T_{1}(B) = \frac{T_{x}}{2} + \sqrt{\left(\frac{T_{x}}{2}\right)^{2} + T^{2}} = 10.4 \text{ MPL}$$

Soit la poutre de soutien d'une dalle en béton illustrée ci-dessous. La chappe a été mal coulée et crée une distribution de charge non uniforme. En ne considérant que le moment de flexion :

- a. Calculer les efforts de réactions aux d'appuis A & B
- b. Représenter les diagrammes des efforts intérieurs le long de la poutre
- c. Écrire l'équation de la déformée
- d. Calculer la position du moment de flexion max (commenter)

1) SCHEMA ET ECOUATION D'ÉQUILIBRE

Exercice 3 (0.5 pt)

$$\begin{cases}
q(A) = ax + b \\
q_0 = al + b
\end{cases} = b = q_0/2$$

$$\Rightarrow q(A) = ax + b$$

$$\Rightarrow a = \frac{q_0 - b}{p} = \frac{q_0}{2p}$$

$$\Rightarrow q(A) = \frac{q_0}{2p}(x + p)$$

$$\Rightarrow A = \frac{q_0}{2p}(x + p)$$

$$\Rightarrow A = \frac{q_0 - b}{2p} = \frac{q_0}{2p}$$

$$\Rightarrow A = \frac{q_0 - b}{2p} = \frac{q_0 - b}{2p}$$

$$\Rightarrow A = \frac{q_0 - b}{2p} = \frac{q_0 - b}{2p}$$

$$\Rightarrow A = \frac{q_0 - b}{2p} = \frac{q_0 - b}{2p}$$

$$\Rightarrow A = \frac{q_0 - b}{2p} = \frac{q_0 - b}{2p}$$

$$\Rightarrow A = \frac{q_0 - b}{2p} = \frac{q_0 - b}{2p}$$

$$\Rightarrow A = \frac{q_0 - b}{2p} = \frac{q_0 - b}{2p}$$

$$\Rightarrow A = \frac{q_0 - b}{2p} = \frac{q_0 - b}{2p}$$

$$\Rightarrow A = \frac{q_0 - b}{2p} = \frac{q_0 - b}{2p}$$

$$\Rightarrow A = \frac{q_0 - b}{2p} = \frac{q_0 - b}{2p}$$

$$\Rightarrow A = \frac{q_0 - b}{2p} = \frac{q_0 - b}{2p}$$

$$\Rightarrow A = \frac{q_0 - b}{2p} = \frac{q_0 - b}{2p}$$

$$\Rightarrow A = \frac{q_0 - b}{2p} = \frac{q_0 - b}{2p}$$

$$\Rightarrow A = \frac{q_0 - b}{2p} = \frac{q_0 - b}{2p}$$

$$\Rightarrow A = \frac{q_0 - b}{2p} = \frac{q_0 - b}{2p}$$

$$\Rightarrow A = \frac{q_0 - b}{2p} = \frac{q_0 - b}{2p}$$

$$\Rightarrow A = \frac{q_0 - b}{2p} = \frac{q_0 - b}{2p}$$

$$\Rightarrow A = \frac{q_0 - b}{2p} = \frac{q_0 - b}{2p}$$

$$\Rightarrow A = \frac{q_0 - b}{2p} = \frac{q_0 - b}{2p}$$

$$\Rightarrow A = \frac{q_0 - b}{2p} = \frac{q_0 - b}{2p}$$

$$\Rightarrow A = \frac{q_0 - b}{2p} = \frac{q_0 - b}{2p}$$

$$\Rightarrow A = \frac{q_0 - b}{2p} = \frac{q_0 - b}{2p}$$

$$\Rightarrow A = \frac{q_0 - b}{2p} = \frac{q_0 - b}{2p}$$

$$\Rightarrow A = \frac{q_0 - b}{2p} = \frac{q_0 - b}{2p}$$

$$\Rightarrow A = \frac{q_0 - b}{2p} = \frac{q_0 - b}{2p}$$

$$\Rightarrow A = \frac{q_0 - b}{2p} = \frac{q_0 - b}{2p}$$

$$\Rightarrow A = \frac{q_0 - b}{2p} = \frac{q_0 - b}{2p}$$

$$\Rightarrow A = \frac{q_0 - b}{2p} = \frac{q_0 - b}{2p}$$

$$\Rightarrow A = \frac{q_0 - b}{2p} = \frac{q_0 - b}{2p}$$

$$\Rightarrow A = \frac{q_0 - b}{2p} = \frac{q_0 - b}{2p}$$

$$\Rightarrow A = \frac{q_0 - b}{2p} = \frac{q_0 - b}{2p}$$

$$\Rightarrow A = \frac{q_0 - b}{2p} = \frac{q_0 - b}{2p}$$

$$\Rightarrow A = \frac{q_0 - b}{2p} = \frac{q_0 - b}{2p}$$

$$\Rightarrow A = \frac{q_0 - b}{2p} = \frac{q_0 - b}{2p}$$

$$\Rightarrow A = \frac{q_0 - b}{2p} = \frac{q_0 - b}{2p}$$

$$\Rightarrow A = \frac{q_0 - b}{2p} = \frac{q_0 - b}{2p}$$

$$\Rightarrow A = \frac{q_0 - b}{2p} = \frac{q_0 - b}{2p}$$

$$\Rightarrow A = \frac{q_0 - b}{2p} = \frac{q_0 - b}{2p}$$

$$\Rightarrow A = \frac{q_0 - b}{2p} = \frac{q_0 - b}{2p}$$

$$\Rightarrow A = \frac{q_0 - b}$$

EFFORTS INTERIEURS

EFFORTS INTERIEURS

$$T(k) = R_1 - \int \frac{d^{\circ}}{2\ell} (x+\ell) dx$$

$$= \frac{d^{\circ}}{3} - \frac{q^{\circ}}{2\ell} (\frac{x^2}{2} + \ell x) = -\frac{q^{\circ} x^2}{4\ell} - \frac{q^{\circ} \ell x}{2\ell} + \frac{q^{\circ} \ell}{3} = -\frac{q^{\circ}}{12\ell} (\frac{3^2 + 6\ell x - 4\ell}{3})$$

$$H(k) = T(k) + \int \frac{q^{\circ}}{3} (x+\ell) dx$$

$$H(k) = T(k) \times + \int_{0}^{\infty} \frac{90}{2l} (k^2 + l_x) dk$$

$$= -\frac{90x^{3}}{4R} - \frac{90Rx^{2}}{2R} + \frac{90Rx^{3}}{3} + \frac{90Rx^{3}}{6R} + \frac{90Rx^{2}}{4R}$$

$$= -\frac{1}{12}\frac{90x^{3}}{4} - \frac{1}{4}\frac{90x^{2}}{4} + \frac{1}{3}90Rx = -\frac{90}{12R}\left(x^{3} + 3Rx^{2} - 4Rx\right)$$

L) EQUATION DEFORMEE

Exercice 3 (0.5 pt)

$$y''(x) = -\frac{H(x)}{EI} = \frac{90}{120EI} \left(x^3 + 30x^2 - 40^2 x \right)$$

$$J(x) = \frac{9.}{120ET} \left(\frac{1}{4} x^4 + 9x^3 - 7x^2 x^2 + C_1 \right)$$

$$y(x) = \frac{90}{121E\Gamma} \left(\frac{1}{20}x^5 + \frac{1}{4}x^4 - \frac{7}{3}P^7 + \frac{3}{4} + C_1 x + C_2 \right)$$

$$3(x) = \frac{90}{9EI} = \frac{118^4}{240} + \frac{118^4}{48} - \frac{118^4}{360}$$

5) HOMENT FLEX HAX

Exercice 3 (0.5 pt)

MIN
$$Tkl = -\frac{90x^2}{4p^2} - \frac{90px}{2p^2} + \frac{90p}{3} = 0 |x(-\frac{12}{90})|$$

$$\frac{3x^{2} + 6 e^{2} - 4 e^{2} = 0}{2a} = e^{2} = e^{2$$

$$M(x = xe) = \frac{-90}{121} \left(x + 31x - 41x \right)$$